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1. Introduction

The calculation of transport phenomena in bound-

ary layers, pipe or duct ¯ows can be easily accom-

plished by a simple, zero order, mixing length

formulation. The application of this model in simple

engineering ¯ows, i.e., ¯ows without recirculation or

asymmetry, is still widely extended because of its sim-

plicity and its ability to match experimental results at

the same degree than more elaborated models. Most of

the mixing-length formulations for near-wall ¯ows use

a damping factor to decrease rapidly the characteristic

length as the wall is approached. The most popular

damping factor is the one suggested by van Driest [1],

which has been modi®ed extensively to accommodate

di�erent wall conditions [2±6].

A yet unresolved and apparently intrinsic shortcom-

ing of the mixing length model is that it cannot predict

properly the turbulent viscosity pro®le �ntAy3� in the

near-wall region. The purpose of the current study is

to demonstrate that the mixing length theory can be

formulated consistently with available information of

the turbulent viscosity pro®les near the wall and to

propose a mixing length equation valid for momentum

and heat transfer across turbulent wall-bounded ¯ows.

This formulation could also improve large-eddy simu-

lations (LES) carried out with subgrid models, where

the length scale in the direction normal to the wall is

modi®ed with a damping factor to improve numerical
predictions (see for example [7]).

2. Mixing length equation

The turbulent or eddy viscosity, nt, very near the

wall can be calculated according to

nt

v
� by�n �1�

where v is the molecular viscosity, b and n are con-

stants, y is the distance from the wall and the super-
script + indicates normalization with respect to
friction velocity and v. It has been well established that

n � 3 [8±13] and 0.0009 R b R 0.001 [8,10,12]. Eq. (1)
with n � 3 was ®rst derived by Murphree [14] applying
asymptote expansions.

The turbulent viscosity can be expressed in terms of
the mixing length l and expanded around y� � 0 using
a MacLaurin series,
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where the subscript `w' identi®es wall values, and the

prime di�erentiation with respect to y�: It has been
assumed that du�=dy� = 1 near the wall �y� < 5� and
that lw � 0 to cancel the turbulent contribution to the

total viscosity at the wall. The series approximation (2)
requires all derivatives to be ®nite at y = 0.
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When l+ is formulated with the van Driest viscous
damping [1] of the linear mixing length variation with

wall distance,

l� � ky�
�
1ÿ exp

ÿÿ y�=A
�� �3�

the ®rst non-zero coe�cient in Eq. (2) corresponds to
the term y+4 because l 0w � 0: In Eq. (3), A = 26 and

k is the von Karman constant. Any formulation with
l 0w 6�0, such as the modi®cation of the van Driest expo-
nential damping function proposed by Grifoll and Gir-
alt [15], to predict high Schmidt number mass transfer

coe�cients, results in n = 2.
The mixing length model as formulated in Eq. (2)

seems incapable of reproducing the y+3 variation near

the wall. When the original van Driest's constant A in
Eq. (3) is modi®ed according to

A � A0

�
1ÿ exp

ÿÿ y�=C
��1=2 �4�

the ®rst derivative of the mixing length in Eq. (2)

remains zero at the wall, l 0w � 0, while l 00w41 as
y�40, making Eq. (2) not applicable. Nevertheless, a
series expansion can still be derived if the square root

of y� is used as variable to force all derivatives to be
®nite at y � 0: In this case, the series expansion
becomes,
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The comparison of Eq. (5) for y+ 4 0 and Eq. (1)
with n = 3 yields

C � bA 2
0

k 2
�6�

For the value b � 0:001 suggested by Kays [10] and

k � 0:4, the best match between the velocity distri-
bution for pipe ¯ow predicted by the present mixing

length equations (3) and (4), subject to Eq. (6), and by
the original van Driest equation �A � 26� for y� > 10,
is obtained with the pair of constants C � 4:8 and

A0 � 27:8: This agreement is illustrated in Fig. 1,
where both predicted velocity pro®les are compared
with data measured by den Toonder et al. [16] at Re �
24,600 and by Laufer [17] at Re � 428,600: The maxi-
mum di�erence between the two calculated velocity
distributions is less than 1.5% at y�09, with an aver-

age di�erence less than 0.5%. This low discrepancy is
maintained along the range where the mixing length
equation is applicable, i.e. Rer10,000 [2]. The mixing
length calculations of the velocity pro®les in Fig. 1

were carried out with the complete Nikuradse [18]
polynomial extension of Eq. (3).
The near-wall turbulent shear stress measured by

den Toonder et al. [16], predicted by DNS [11,13], and
calculated from the original van Driest and the present
formulations of mixing length model are shown in

Fig. 2. As mentioned before, the van Driest formu-
lation predicts a y�4 dependency near the wall and de-
viates progressively from the data as the wall is

approached. The present formulation agrees with DNS
results and with the limited experimental data available
in the near-wall region.

3. Heat transfer

Heat and/or mass transfer in simple ¯ow geometries,
where the adoption of the mixing length model for
momentum transport is reasonable, can also be ad-

equately predicted by solving the energy equation. This
requires the use of a turbulent thermal di�usivity �at�
analogous to the turbulent viscosity, corrected by a

Fig. 2. Distribution of the near-wall turbulent shear stress in

pipe ¯ow.

Fig. 1. Experimental and calculated dimensionless velocity

pro®les.
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turbulent Prandtl number, Prt � nt=at, which has to be
estimated.

For pipe ¯ow the energy equation is

rCpu
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�7�

where r is the density, Cp the heat capacity, u the vel-
ocity, T the temperature, z and r are axial and radial
coordinates, respectively, and q is the radial heat ¯ux

given by

q � ÿRCp
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Direct measurements of the Prt are relatively scarce
and exhibit a large scatter. Experimental data and
DNS calculations suggest that for fully developed pipe

¯ow and moderate to high Prandtl number conditions
the Prt is almost independent of wall distance. More-
over, from analysis of experimental velocity and tem-
perature pro®les, Kays [10] concluded that Prt � 0:85
in the region where both pro®les are logarithmic.
The energy conservation equation (7) with heat

¯uxes given by Eq. (9) and boundary conditions

T � Tw; @ r � R �9�

and

@T

@r
� 0; @ r � 0 �10�

has been solved for di�erent Reynolds and Prandtl
numbers, subjected to @T=@z � constant, as the fully

developed temperature condition requires [5].
Fig. 3 shows the variation of the Nusselt number

with Prandtl number predicted with the van Driest and

present mixing length formulations with a constant

Prt � 0:85: The current formulation is in good agree-
ment with the correlation of Sleicher and Rouse [19],
whereas the results obtained with the van Driest pro-
posal progressively deviate as the Pr number increases

due to the atAy�4 dependency observed in Fig. 2.
Finally, the dimensionless temperature pro®les

reported by Kader [20] are shown in Fig. 4 together

with the predictions from the present mixing length
formulation using Prt � 0:85: There is reasonable
agreement between the experimental and the predicted

temperature pro®les suggesting that the proposed
change of the constant A in the original van Driest
equation (3), given by Eq. (4), provides both accurate
predictions for both momentum and heat transfer over

a wide range of conditions.

4. Conclusions

A new mixing length equation for momentum trans-

fer, consistent with ntAy�3 near the wall, has been pre-
sented. A constant Prt � 0:85 is su�cient to predict
heat ¯uxes and temperature pro®les in agreement with

literature data for pipe ¯ow and for Prr5:
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